ГЕОГРАФИЯ И ПРИРОДНЫЕ РЕСУРСЫ 2013 № 4 С. 73–83

УДК 581.52 (571.5) + 551.4.01/02

С. И. Шаманова*, С. Б. Кузьмин**, С. Г. Казановский*, А. С. Плешанов*

*Сибирский институт физиологии и биохимии растений СО РАН, г. Иркутск
**Институт географии СО РАН, г. Иркутск

ГЕОГРАФИЧЕСКИЕ ЗАКОНОМЕРНОСТИ РАСПРОСТРАНЕНИЯ ГОЛОБОЙ ЕЛИ
(PICEA OBOVATA VAR. ALTAICA) НА ХАМАР-ДАБАНЕ

Представлены некоторые результаты геоботанических и геоморфологических исследований распространения насаждений голубой ели (Picea obovata var. altaica (Tepl.) Kom.) в хамар-дабанской популяции этого таксона на эталонном участке Мамай—Вядриня. Установлена достоверная и устойчивая связь морфологических характеристик деревьев с возрастной динамикой древостоя, ведущими геоботаническими показателями леса, вмещающих насаждения голубой ели, геолого-геоморфологическими и природно-климатическими условиями мест произрастания. Среди геоботанических показателей существенными оказываются тип леса и состав древостоя, сомкнутость крон деревьев и кустарникового врока, строение покрытия напочвенного покрова. Возрастная динамика деревьев голубой ели определяется стадией роста, классом и группой возраста. Важны также характеристики микрорельефа и состав обложенного материала, на котором произрастают деревья, их положение в пологе ландшафта и общее морфологическое строение микрорельефа, виды и особенности покрова и климатических условий мест произрастания.

Ключевые слова: геоботанические и геоморфологические характеристики мест произрастания, возрастная динамика древостоя, hr. Хамар-Дабан.

We report on some results from geobotanical and geomorphological investigations into the distribution of blue spruce (Picea obovata var. altaica (Tepl.) Kom.) stands in the Khamar-Daban population of this taxon in the Mamai—Vydrinaya reference area. It is found that the morphological characteristics of trees exhibit a reliable and consistent correlation with the age dynamics of timber stands, leading geobotanical indicators of forests incorporating blue spruce stands, and with geolo-geomorphological and natural-climatic conditions of habitats. Of particular importance among the geobotanical indicators are the forest type and stand composition, crown closure of trees and shrub layers, and projective cover of the soil mantle. The age dynamics of blue spruce stands is determined by the growth stage, and by the age class and group. Also, the characteristics of microrelief and the composition of geological debris material, on which the trees grow, are of significance, their position in the altitudinal belt of landscape with a specific morphometry of macrorelief and the kinds and peculiarities of ongoing geomorphological processes, and the natural-climatic and other landscape conditions for tree growth.

Keywords: geobotanical and geomorphological characteristics of habitats, age dynamics of stands, Khamar-Daban Range.

ВВЕДЕНИЕ

Знание особенностей географической зональности природных комплексов, высотной поясности ландшафтов, физико-географических условий мест непосредственного произрастания отдельных видов и популяций растений необходимо для понимания закономерностей их современного распространения, факторов среды обитания, определяющих биоценотический статус, оценки вероятности инвазий в те или иные регионы и возможности интродукции [1–3]. Характерная для Picea obovata var. altaica (Tepl.) Kom. голубая или сизая окраска хвоя встречается повсеместно у ели сибирской в югных горных и предгорных районах Сибири. Такие деревья произрастают обычно небольшими группами в массивах ельников с обычной зеленой окраской хвои. В отдельных регионах несколько таких распространенно сближенных групп образуют популяции. В настоящее время P. obovata var. altaica занесена в Красные книги Читинской области (ныне Забайкальский край) и Республики Бурятия в связи с ее крайне редким распространением, отсутствием широких ареалов и высокими экстремальными и декоративными особенностями.

Впервые в Сибирском регионе разновидность ели сибирской с сизой окраской хвои была описана в 1868 г. на Алтае как Picea excelsa var. altaica Tepl., а впоследствии, в первой половине XX в., — на Алтае и в Туве как Picea obovata var. altaica (Tepl.) Kom. [4]. В горах Южной Сибири голубая разновидность ели впервые описана Л. И. Мальшевым в 1957 г. в долине р. Шумак как Picea obo-
ШАМАНОВА И ДР.

vata var. coerulea Malysch. [5]. В настоящее время P. obovata var. coerulea рассматривается как синоним P. obovata var. altaica [6]. Мы также склонны принять идентичность этих таксонов и считать P. obovata var. coerulea более поздним (по времени обнаружения) синонимом P. obovata var. altaica, основываясь на сходстве морфологических признаков и анализе их распространения в южных районах Восточной Сибири.

Если ботанические и морфологические характеристики P. obovata var. altaica так или иначе изложены в литературе, в том числе и нами [7, 8], то географическим и климатическим (экологическим) условиям ее произрастания уделено мало внимания. Поэтому главная задача настоящего исследования — геоморфологический и геоботанический анализ мест произрастания и морфологии P. obovata var. altaica в ее хамар-дабанской популяции на примере эталонного участка Мамай—Выдрина в Южном Прибайкалье.

МЕТОДЫ И ПРОЦЕДУРА ИССЛЕДОВАНИЙ

Геоботанические исследования включали комплексное изучение P. obovata var. altaica, экологических условий мест произрастания, экотопов и биотопов. Учитывалось, что развитие фитоценозов зависит от комплекса физико-географических факторов, среди которых особая роль отводится рельефу как трансформатору тепла и влаги — основных регуляторов развития и распространения растений и их популяций [9, 10]. Внимание акцентировано также на лесной типологии, географических особенностях лесообразовательного процесса, закономерностях роста и продуктивности древостоев [11, 12].

Использовались стандартные методы геоботанических исследований [13, 14], главным объектом которых при описании конкретных точек наблюдения был фитоценоз. Последний понимался нами как закономерная совокупность видов растений, приспособившихся к совместному существованию в результате продолжительной истории развития в определенных неизменных или слабо измененных экологических условиях. Для разграничения фитоценозов использовался домinantный принцип (выделение видов-домinantов), по которому фитоценозы с одинаковыми видами-домinantами, пусть и различающиеся по составу видов, имеющих небольшое обилие, объединяются в растительные ассоциации. Авторы руководствовались также методическими рекомендациями по исследованиям еловых лесов и насаждений в составе других типов леса таежной зоны не только Сибири, но и всей России [15—17].

При изучении лесных фитоценозов важно их вертикальное строение [18], поэтому нами выделялись ярусы, которые расчленялись по жизненным формам растений на древесный, кустарниковый, травяно-кустарничковый, мохово-лишайниковый. Поскольку ярус — понятие не только морфологическое, но и экологическое, фитоценотическое [19], то деревья меньшей высоты из-за их молодости или угнетенности выделялись в пологи.

Площадь пробного участка в точках наблюдения (ТН) составляла 100 м². Они выбирались по наличию в первом ярусе P. obovata var. altaica. Зрелые деревья типовой разновидности P. obovata Ledeb. с зеленой хвоей на пробных площадках отсутствовали. Для выяснения роли древесных пород в фитоценозе составлялась формула древостоя методом оценки соотношения между численностью деревьев. Проективное покрытие определялось глазомерно. Для оценки обилия видов растений применялась шкала Друде. Возраст древостоя определялся с помощью глазомерной съемки либо с применением лесотаксационных материалов. Сомкнутость крон деревьев и подлеска вычислялась по специальной шкале [20]. Толщина стволов измерялась непосредственно в полевых условиях или устанавливалась по высоте деревьев [21].

Оценка возрастной структуры древостоя глубокой ели базировалась на методических принципах ее типизации Г. Е. Комина [22, 23] с учетом работ по возрастной структуре и динамике еловых насаждений на севере европейской части России и в Сибири [24, 25]. Для корректировки возрастной динамики принималось во внимание тип леса, вмещающего насаждения глубокой ели, который с позиций генетической классификации рассматривался как этап лесообразующего процесса, а тип насаждения — как восстановительная и возрастная стадия развития типа леса. Основу генетической классификации составляет тип лесорастительных условий, который определяется рельефом, почвенным покровом, водным режимом, т. е. факторами, обеспечивающими одинаковый лесорастительный эффект. Нами использованы генетические признаки, основу которых составляет тип лесорастительных условий, генезис и близкие формы восстановительно-возрастной динамики видов-эдификаторов [26—29].
Возрастная динамика древостоев голубой ели определялась на основе трех показателей: 1) стадии роста, или абсолютного возраста преимущественной части древостоя; 2) класса возраста, или возрастного интервала, устанавливаемого в зависимости от биологических особенностей древесных пород и характеристики возрастают структуры древостоя; 3) группы возраста, или распределения древостоя в зависимости от возраста спелости и продолжительности классов возраста. В лесной таксации различают: молодняки — насаждения I и II классов возраста; средневозрастные — насаждения начиная с III класса возраста и ограниченного возрастом приспевающих; приспевающие — насаждения одного или двух классов возраста, предшествующих возрасту спелости леса; спелые — насаждения, достигшие установленного возраста рубки леса; перестойные — насаждения, превышающие возраст рубки леса на два класса и более. Возраст спелости леса — это состояние, наиболее соответствующее функциональному назначению лесов. Различают естественную, техническую, защитную и другие виды спелости, возраст которых позволяет определить возраст рубки древостоя. Для изучаемых нами насаждений голубой ели возможно применение рубок главного пользования, обусловленных естественной спелостью, и лесовосстановительных рубок, поэтому возраст рубок устанавливается в 80 лет [30—32].

При исследовании применены стандартные геоморфологические методы, связанные с представлениями о ярусности рельефа, которая, наряду с подстилающим геологическим субстратом, является основой при определении высотной поясности ландшафтов. Ярусность рельефа представлена как последовательная смена типов рельефа с высотой, обусловленная климатической зональностью или неотектонической историей развития гор. Нами использовано более узкое, имеющее отношение к региональным и локальным условиям понятие ярусов рельефа как его типичных высотных уровней, которые отличаются своеобразием морфологии земной поверхности и особенностями протекания геоморфологических процессов, а также занимают конкретное гипсометрическое положение. В каждой региональной и локальной ситуации ярусность рельефа проявляется по-разному: некоторые ярусы выпадают, а строение их усложняется, и по простиранию в них могут выделяться отличные друг от друга сегменты. Именно высотные пояса ландшафта или ярусы рельефа использованы нами в качестве главного признака влияния геоморфологических факторов на характер проявления (строения экотопов) и собственном морфологии Picea obovata var. altaica [33, 34].

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

В хамар-дабансской популяции представлены разновозрастные группы P. obovata var. altaica. Был выбран небольшой участок произрастания голубой ели в долине р. Большой Мамай и нижнем течении р. Выдриной. Эти фрагменты пространственно очень сближены, но представлены на разных высотных уровнях ландшафтов, что позволило нам расположить их на гипстетическом ландшафтно-геоморфологическом профиле от среднегодового до предгорных равнин хр. Хамар-Дабан, прилегающих к оз. Байкал (рис. 1).

Эталонный участок Мамай—Выдрин наложен на северном микрорасположен хр. Хамар-Дабан, в долине Большого Мамая (от верховий до выхода из гор), в нижнем течении Выдриной (в 2—2,5 км от ее впадения в оз. Байкал). Насаждения голубой ели произрастают в окружении елово-пихтового щитовниково-черничного, елово-пихтового с кедровым сланцем баданово-зеленомохового, елово-пихтового с кедром орляково-баданово-зеленомохового и кедрово-елово-пихтового с береев чернично-зеленомохового леса в горных и предгорных ландшафтах долины Большого Мамая с активным развитием мохового покрова и в окружении елово-березового с кедром брусничного, кедрово-березово-елового с пихой чернично-зеленомохового и тополево-елово-береевого вейникового леса в пойменно-террасовых ландшафтах низовий долины Выдриной с меньшим развитием мохового покрова.

Хамар-дабанская популяция голубой ели расположена в выдринском лесничестве, для которого в 80-х гг. XX в. были проведены лесоустройственные работы. Материалы лесоинформации учитывали вхождение P. obovata Ledeb. (площадь в лесничестве — 21 004 га) и P. obovata var. altaica (площадь в лесничестве — 11 225 га) в формулы состава древостоя и подроста таксационных выделов лесничества. В основном это кедровые леса широкотравные, пихтово-сланцевые и бадановые. Возобновление P. obovata var. altaica идет более активно по сравнению с P. obovata Ledeb. (соотношение подроста составляет 3,8, или 869 га к 229 га), однако собственно в древостоя голубая ель значительно уступает ее зеленой формой (10 365 га и 20 775 га соответственно) [35].

Полевые исследования проведены в семи ТН, четыре из которых находятся в долине Большого Мамая и три — в нижнем течении Выдриной. В них сделаны стандартные геоботанические описания P. obovata var. altaica и вмещающих ее древостоев, а также проведены географические и геоморфоло-
Рис. 1. Эталонный участок Мамай–Выдринка.
Высотные пояса ландшафта (цифры в квадрахах): 1 — гольцовый, 2 — подгольцовый, 3 — предгольцовых склоно
нов, 4 — склонный, 5 — предгорный, 6 — прибрежно-равнинный. ТН 1–7 — точки наблюдения. Заштрихован
ным прямоугольником обозначен участок долины р. Большой Мамай (см. рис. 2).

гические исследования мест их произрастания. Одновременно изучены некоторые морфологические ха
кратеристики деревьев на фоне типов леса, возрастной динамики древостоев голубой ели, высотных поясов ландшафтов, абсолютных гипсометрических положений эксо- и биотопов, состава грунтов, микро- и макроморфологии рельефа, видов и характера геоморфологических процессов (табл. 1, 2).

Морфологические показатели P. obovata var. altaica (высота деревьев и толщина стволов) имеют отчетливую связь с некоторыми геоботаническими характеристиками (тип леса, сомкнутость древо
в, кустарниковый ярус и его видовые свойства, проективное напочвенное покрытие), возрастной динамикой древостоев, особенностями микрорельефа и обломочного геологического субстрата в местах произрастания деревьев, высотной поясностью ландшафтов, абсолютным высотным положением эко
тонов, макрорельефом и его морфологией, характером протекания геоморфологических процессов.
ГЕОГРАФИЧЕСКИЕ ЗАКОНОМЕРНОСТИ РАСПРОСТРАНЕНИЯ ГОЛУБОЙ ЕЛИ

Таблица 1

<table>
<thead>
<tr>
<th>ТН</th>
<th>Высотный пояс</th>
<th>Абс. высота, м</th>
<th>Морфология рельефа</th>
<th>Геоморфологические процессы</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Подгольцовый</td>
<td>890</td>
<td>Рельеф среднегорный, высоты 1300-1400 м; чередование крупных склонов и долин мелких притоков</td>
<td>Линейная эрозия, крип на склонах, десерпция на водоразделах, морозобойное растрескивание в нивальных низинах</td>
</tr>
<tr>
<td>2</td>
<td>Предгольцовых склонов</td>
<td>780</td>
<td>Рельеф среднегорный, высоты 1000-1100 м; склоны средней крутизны, плоские долины и водоразделы</td>
<td>Линейная эрозия, делювиальное смещение материала на склонах, десерпция и режеция на водоразделах</td>
</tr>
<tr>
<td>3</td>
<td>Склоноовый</td>
<td>760</td>
<td>Рельеф плоскогорный, высоты 900-1000 м; склоны средней крутизны, плоские долины и водоразделы</td>
<td>Линейная эрозия, делювиальное смещение материала на обнаженных участках склонов, десерпция на водоразделах</td>
</tr>
<tr>
<td>4</td>
<td>Предгорный</td>
<td>600</td>
<td>Рельеф плоскогорный, высоты 700-800 м; пологие склоны, плоская доляна с выходом на предгорную равнину</td>
<td>Линейная и плоскостная эрозия, крип и десерпция на склонах, заболачивание и аккумуляция рыского материала в долине</td>
</tr>
<tr>
<td>5</td>
<td>Террасоводолинный</td>
<td>490</td>
<td>Правый равнинный, высоты 450-500 м; плоская первая надпойменная терраса р. Выдриной; бугристо-западинный микрорельеф</td>
<td>Термозероции и морозное полигональное пучение грунтов — зимой, сушфоэози и просадки грунта — летом</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>480</td>
<td>Площадки с высотой 460 м; р. Выдриной; бугристо-пластинчатый микрорельеф</td>
<td>Заболачивание, линейная и боковая эрозия, режеция, термозероции, пучение грунтов</td>
</tr>
<tr>
<td>7</td>
<td>Пойменно-долинный</td>
<td>460</td>
<td>Рельеф плоский, высоты 460 м; р. Выдриной; бугристо-западинный микрорельеф</td>
<td>Заболачивание, линейная и боковая эрозия, режеция, термозероции, пучение грунтов</td>
</tr>
</tbody>
</table>

В отношении показателей лесных насаждений, входящих древостоя голубой ели, отметим, что в ТН 2, где *P. obovata var. altaica* наименее развита, она произрастает в элево-пихтовом лесу с хорошо развитым кустарниковым ярусом из кедрового стланника высотой до 2 м и малины обыкновенной, которые, вероятно, и тормозят развитие ее всходов и рост молодых растений. Выше по долине Большого Мамая в ТН 1 небольшие группы и единичные экземпляры голубой ели распространены в кедрово-пихтовом лесу. Ниже по долине Большого Мамая, в ТН 3, *P. obovata var. altaica* проявляет мелкими группами и отдельными деревьями в элево-пихтовом лесу с кедром, а в ТН 4 уже значительными по площади группами в кедрово-пихтовом лесу с примесью березы. В нижнем течении Выдриной в ТН 5 голубая ель встречается мелкими группами в кедрово-березовом лесу с примесью кедра, в ТН 6 — в кедрово-березово-элево-пихтовом лесу с примесью пихт, а также в ТН 7 — в виде более крупных групп в кедрово-элево-пихтовом лесу. В ТН 7 голубая ель входит в состав тополевых и березовых насаждений, иногда образует небольшие ареалы, что можно рассматривать как естественный лесообразующий процесс в пойменно-долинных геоморфологических условиях, не связанный с сукцессиями [36].

Кустарниковый ярус хорошо развит только в ТН 2 и представлен кедровым стланником, единично малиной обыкновенной, в ТН 4 отсутствует. В ТН 1 и 3 кустарниковый ярус развит слабо: в ТН 1 включает рябину кедровую, кабзу кедровую, малину сакалинскую, жимолость Пальласа; в ТН 3 — рябину кедровую, жимолость Пальласа. В ТН 4 кустарниковый ярус развит умеренно и представлен черемухой обыкновенной и таволгой вилюстой, единично рябиной кедровой, жимолостью Пальласа, шиповником загопастым, боярышником кроваво-красным. В ТН 5 и 6 кустарниковый ярус не выражен, единично встречается рябина кедровая высотой 1—3 м.

Анализ возрастной динамики древостоя *P. obovata var. altaica* показывает, что классы и группы их возраста находятся в прямой зависимости от стадий роста деревьев, а в совокупности в значительной степени определяют их морфологические характеристики (высоту деревьев и толщину стволов) наряду с геоботаническими и гео-географическими факторами.

В группу возрастов «молодняка» попали древостои голубой ели в ТН 2, 3 и 6, которым характерны I (ТН 2) и II (ТН 3, 6) классы возраста. Стадия роста в ТН 2 составляет 15—20 лет, а в ТН 3 и 6 30—40 лет. Тем не менее в ТН 3 деревья ниже, но толще, чем в ТН 6, что обусловлено характеристиками вмещающего леса и геолого-геоморфологическими факторами. В ТН 3 насаждения голубой ели расположены в третьем ярусе, где над ними доминируют кедр и пихта с показателями сомкнутости крон 0,7, пихта преобладает в составе древостоя, а сомкнутость подлеска всего 0,1. Несмотря на то
<table>
<thead>
<tr>
<th>ТН</th>
<th>Высокий пояс ландшафта</th>
<th>Характеристика леса, вмещающего насаждения голубой ели</th>
<th>Морфологические параметры деревьев</th>
<th>Возрастная динамика древостоев голубой ели</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>состав древостоя</td>
<td>сомкнутость</td>
<td>проективное покрытие, %</td>
</tr>
<tr>
<td>1</td>
<td>Подгольцов</td>
<td>Елово-пихтовый щитовников-черничный</td>
<td>8 П2Е</td>
<td>0,6</td>
</tr>
<tr>
<td>2</td>
<td>Предгольцов</td>
<td>Елово-пихтовый с кедровым сплаником баданово-зеленомошный</td>
<td>6 П4Е</td>
<td>0,5</td>
</tr>
<tr>
<td>3</td>
<td>Склоновый</td>
<td>Елово-пихтовый с кедром ольхово-баланово-зеленомошный</td>
<td>5 П4Е1К</td>
<td>0,7</td>
</tr>
<tr>
<td>4</td>
<td>Предгорный</td>
<td>Кедрово-елово-пихтовый с березой чернично-зеленомошный</td>
<td>4 П3 Е2К1Б</td>
<td>0,6</td>
</tr>
<tr>
<td>5</td>
<td>Террасово-долинный</td>
<td>Елово-березовый с кедром бруницкий</td>
<td>5 Б3 Е2К+П</td>
<td>0,8</td>
</tr>
<tr>
<td>6</td>
<td>Кедрово-березово-елово-пихтовый чернично-зеленомошный</td>
<td>4 Е3 Е2К1П</td>
<td>0,6</td>
<td>0,4</td>
</tr>
<tr>
<td>7</td>
<td>Пойменно-долинный</td>
<td>Тополово-елово-бережов вейниковый</td>
<td>5 Б3 Е2Г</td>
<td>0,7</td>
</tr>
</tbody>
</table>
что в ТН 6 насаждения голубой ели расположены также в третьем ярусе, над ними доминируют береза и кедр с меньшим показателем сомкнутости крон — 0,6, в составе древостоя преобладает голубая ель, а сомкнутость подлеска возрастает до 0,4. Развитый подлесок в ТН 6, вероятно, сдерживает рост камбиальной массы у взрослых деревьев и нарастание их толщины. В ТН 3 бедные органическими веществами маломощные почвы с включениями дресьва не способствуют росту деревьев в высоту, что отмечается и в ТН 6, где экспонированы хорошо развитые сулинницестые почвы надпойменной террасы. Ограничению роста деревьев в высоту и увеличению роста в диаметре в ТН 3 способствуют крупнобугристый микрорельеф на мелко- и среднеобломочном делювиальном материале с выступами крупных глыб, активное смешение делювиев, боковая эрозия (низкие и более толстые деревья крепче держатся в таком грунте за счет поступления питательных веществ в корневую систему). В ТН 6 микрорельеф мелкозападинный, в основном пологий, на песчано-гравийном алювием первой надпойменной террасы со слабым развитием эрозионных процессов. Древостой голубой ели в ТН 6 расположен в террасово-долинном прибрежном высотном поясе ландшафтов с более благоприятными природно-климатическими условиями для роста, чем в ТН 3, которая находится в склоновом высотном поясе.

В группу «средневозрастные» попали древостоя голубой ели в ТН 1, 5 и 7, где для них характерен III класс возраста. Стадия роста составляет 40–50 лет для ТН 1 и 5 и 50–60 лет для ТН 7. Характеристики леса, вмещающего насаждения голубой ели, в ТН 1 и 5 примерно одинаковые, и некоторые вариации в морфологических параметрах деревьев связаны главным образом с физико-географическими условиями — характером микрорельефа, геологического субстрата, геоморфологических процессов и климата.

В группу «приспевающие» и «спелые» попали древостоя голубой ели в ТН 4, для которых типичны IV и V классы возраста. Стадия роста составляет 70–90 лет. Максимальное развитие морфологических параметров голубой ели именно в ТН 4 связано со всем комплексом экологических условий произрастания. Экотопы голубой ели здесь расположены в предгорном высотном поясе ландшафта с благоприятными природно-климатическими условиями для роста, на плато приподнятом склоне со слабым развитием эрозионных процессов, на мелкообломочном делювиальном материале с развитой супесчано-сулинницей почвой, которые обеспечивают хороший промывной режим увлажнения грунтов. В формулё древостоя вмещающего леса ель лишь немного уступает пихте, но доминирует над неё по положению в высотном ярусе: ель — в первом, пихта — в третьем. Располагаясь в первом ярусе, ель незначительно уступает по абсолютной высоте кедру: 25–28 и 27–30 м соответственно.

Характер проективного покрытия напочвенного покрова может также оказывать влияние на морфологию деревьев и структуру древостоя в насаждениях голубой ели. Например, для однозврастных групп древостое в ТН 1, 5 и 7 при одинаково редком подросте с низкой сомкнутостью напочвенный покров играет экрипирующую роль, защищая почвы от выхлопаживания. Поэтому даже в подъездовом высотном поясе в ТН 1 в экстремальных экологических условиях смогли развиться 40–50-летние древостоя голубой ели. Плотный напочвенный покров тормозит развитие эрозионных, гравитационных и криогенических процессов.

В отношении микрорельефа и обломочного геологического субстрата, на котором произрастает P. obovata var. altaica, следует подчеркнуть, что в ТН 2 это волнистый микрорельеф со среднеобломочным коллювиальным и мелко- и среднеобломочным делювиальным материалом. Для ТН 1 характерен волнистый рельеф с грубообломочным коллювием; ТН 3 — крупнобугристый микрорельеф с мелко- и среднеобломочным делювием и выступающими на них крупными глыбами; ТН 4 — среднебугристо-западинный микрорельеф с мелкообломочным делювием; ТН 5 — мелкобугристо-западинный микрорельеф с гравийно- песчаным алювием; ТН 6 — мелкобугристо-западинный микрорельеф с песчано-гравийным алювием; ТН 7 — плоский кочкарный микрорельеф с суспесчано-алевритовым алювием.

Что касается высотных поясов ландшафта, микрорельефа и его морфологии, видов и особенностей протекания геоморфологических процессов (см. табл. 1), важно сказать следующее. Наименее развит P. obovata var. altaica в поясе предгорных склонов в окружении среднегорного рельефа, на хорошо дренированных местоположениях с развитием в грунтах очагов сезонной мерзлоты, где она представлена только подростом (ТН 2). Выше, в подъездовом поясе среднегорного рельефа, высота деревьев и толщина стволов увеличиваются и появляются молодые однозврастные деревья (ТН 1). Однозврастный молодняк голубой ели образуется в склоновом ярусе в условиях низкогорного рельефа и периодического застывания талых и текущих вод в долине Больного Мамая (ТН 3). Присутств
Рис. 2. Долина р. Большой Мамай в верхнем течении.

1 — крутее препарированные ледниками склоны; 2 — останцы обтекания; 3 — «баранны дыбы»; 4—6 — фрагменты морен: неперечных (4), боковых (5), донных (6); 7 — бугры пучения; 8 — поперечные уступы на дне долины. Высотные ландшафтные уровни: 9 — пойма с редкостойным лесом, унаследованным по условиям мест произрастания от юднеледниковья; 10 — склон средней крутизны с лугово-степной растительностью, унаследованной по условиям мест произрастания от сартанского оледенения; 11 — склон средней крутизны с кустарниковой и лугово-степной растительностью, унаследованной по условиям мест произрастания от каргинского межледниковья; 12 — склон средней крутизны с кустарниковой и лугово-степной растительностью, унаследованной по условиям мест произрастания от юднеледниковья; 13 — склон средней крутизны с кустарниковой и лугово-степной растительностью, унаследованной по условиям мест произрастания от юднеледниковья.
ГЕОГРАФИЧЕСКИЕ ЗАКОНОМЕРНОСТИ РАСПРОСТРАНЕНИЯ ГОЛОБУЙ ЕЛИ

вающие и спелые насаждения голубой ели развиваются в предгорном ярусе рельефа в условиях низ-, кото́рый с развитием процессов частичного заболачивания и аккумуляции, где морфологические показатели деревьев максимальны для всего исследуемого района (ТИ 4). Изучение голубой ели в равнинных условиях (долина р. Выдриной) показало, что на участках плоских террас с мелкобугристо- западинным рельефом, частицным заболачиванием, суффозией и просадкой грунтов морфологи- ческие показатели деревьев вновь снижаются, и здесь представлены только молодники (ТИ 5 и 6). С выходом в пойму долины р. Выдриной, где развиты процессы частичного заболачивания, реже, и ручей и притоков грунтов с их промывным режимом, P. obovata var. altaica переходит в разряд приспевающих, и морфологические параметры деревьев возрастают за счет промывного режима грунтовых вод и процессов термо- карста, создающих благоприятные грунтовые условия для роста деревьев (ТИ 7).

В верховых р. Большой Мамай преобладают реликтовые формы горно-долинного озеленения, которые находятся в тесной связи с характером представленной на них растительности (рис. 2). Ак- кумулятивные модификации этих форм способствуют закреплению на них лесной растительности, в том числе голубой ели (ТИ 1). Анализ растительности и рельефа показывает, что толщи сарматского ледника в ТИ на рис. 2 можно оценить приближительно в 20—25 м, а зырянского — в 35—40 м. Под левым склоном в пойме реки располагаются небольшие озера среди переувлажненных и заболоченных участков, питающихся освободившимися от мерзлоты родниками и грунтовыми водами. Сток экзарин перергужает реликтовый ритрал и отложившаяся перед ним морена, образовавшись в период таяния сарматского ледника в позднедельниковые и нежеработ в атлантический оптимум голоена. Бугры покрываются, батоги и также разновозрастные. В середине поймы отмечаются реликтовые бугры покрываются, усекновенные от позднедельниковых (13 500—10 500 л. н.). Их ледовая основа активно раз- рушается, что позволило сформировать на их поверхности мощным рыхлым отложениям, давшим основу для образования достаточного гумусированных почвенных горизонтов, на которых отмечается лесные экотопы. Тем не менее в самой нижней части геологического разреза этих бугров покрываются еще отмечаются скопление льдом слои рыхлых отложений. У правого склона долины реки сформи- ровался молодые бугры покрываются, усекновенные от суббorealной стадии походления голоена. Их структура находится на глубине нескольких метров, а перекрывающая толща рыхлых отложений полностью промерзшая. Такие участки представляют собой мелкие острова сезонной мерзлоты, ко- торые подвергаются снежниками, формирующимися в зимний период в ветровой тени останцов обтекания. Существование здесь современной мерзлоты подтверждается и полным отсутствием растительного покрова. Бугры покрываются активно развиваются в настоящее время, а вся поверхность вокруг них сложена реже-еловыми грунтами и солифлокционными суспензиями.

ЗАКЛЮЧЕНИЕ

P. obovata var. altaica в хамар-дабанской популяции этого таксона представлена на разных высот- ных поясах ландшафта — от подольцового до пойменно-долинного, но морфологические характери- стики деревьев и структура их ареалов изменяются при переходе из одного высотного пояса в другой. Изучение голубой ели в эталонном участке Мамай—Выдриной показало связь морфоло- гических параметров деревьев со следующими характеристиками: возрастной динамикой древостоев (стадии роста, классы и группы возраста); геоботаническими свойствами лесов, вмещающих насаждения голубой ели (тип леса, состав древостоя, сомкнутость крон и подлеска, проективное покрытие напочвенного покрова); геоморфологическими и геологическими факторами (строение микро- и макрокарста, особенности геоморфологических процессов, состав подстилающего геологического субстрата). Иногда существенными оказываются также природно-климатические микро- и мезоусловия, местопроизрастания и гидрологический режим грунтов.

Наиболее развитие голубой ели характеризуется для двух местоположений: ТИ 4 — кедрово-елово- пихтовый лес у выхода р. Большой Мамай на предгорную равнину, где представлены спелые насаждения P. obovata var. altaica с высотой деревьев до 25—28 м и диаметром стволов до 25—33 см; ТИ 7 — тополево-елово-березовый лес на высокой пойме долины р. Выдриной, включающий средневозрастные насаждения P. obovata var. altaica с высотой деревьев до 18—20 м и диаметром стволов до 20—23 см. Наименьшее развитие голубой ель получила в ТИ 2 — елово-пихтовом лесу в поясе предгрозовых склонов в окружении среднегорного рельефа в верхнем течении р. Большой Мамай, где представлен в основном только подрост. Наиболее устойчивы древостои голубой ели в рефлугуем неразделенной флоры и климатического оптимума голоена в предгорном высоком пояс (ТИ 4) и прибежно-до-
длиной пояс (TH 5–7), а также в раннеголоценовых рефугиумах в подтаёжном поясу (TH 1), где они могут быть остатками плакорных ельников. Менее устойчивы древостой гольбей ели в местах домирование сугубо берёзовой флоры (TH 2 и 3).

Проведенные исследования на эталонном участке открывают перспективы для изучения геоботанических и геоморфологических условий мест произрастания P. obovata var. altaica в других районах хамар-дыбансской популяции этого таксона, а также в других популяциях юга Восточной Сибири. Эти исследования позволяют в значительной степени оптимизировать мероприятие по сохранению гольбей ели в ликий природе и адаптация ее в качестве специфических декоративных насаждений в городах Прибайкалье и Приангарья [37]. Организация лесопользования в местах дикорастущих ареалов гольбей ели как в Прибайкалье, так и в других районах юга Сибири должна опираться на принципы устойчивого, рационального природопользования [38].

СПИСОК ЛИТЕРАТУРЫ

34. Кузмин С. Б., Шаманова С. И., Казановский С. Г. Определение высотной поясности ландшафтов на базе цифровых моделей рельефа и характеристики дендрофлоры // География и природ. ресурсы. — 2012. — № 4. — С. 137—149.

Поступила в редакцию 6 марта 2013 г.